Theano primer

What is Theano?

m From Theano's online documentation:
Theano is a Python library that allows you to define,
optimize, and evaluate mathematical expressions
involving multi-dimensional arrays efficiently.

m Does symbolic computation and differentiation (i.e. the end
result of differentiation is itself a symbolic expression)

m Very similar to numpy with respect to its interface

m Allows doing numerical computation in a high-level language
(Python) while still retaining the speed of low-level languages
(like C)

m Allows the generation of efficient CPU and GPU code
transparently

Theano primer

Typical Theano workflow

Instantiate symbolic variables

Build a computation graph out of those variables

Compile a function with the symbolic variables as input and
the output of the computation graph as output

Call the compiled function with numerical inputs

Theano vs. numpy

m Theano interface is very similar to numpy interface

® numpy arrays are automatically converted to constant
symbolic variables when used inside a computation graph

m You can manipulate Theano symbolic variables in the same
way you'd manipulate numpy arrays

Going further: Theano's basic interface

http://deeplearning.net/software/theano/
library/tensor/basic.html

Theano primer

Types of symbolic variables

TensorVariable Its value is unspecified at graph creation and can
change from one call of the compiled function to
another (e.g. and y in y = 3z — 2). Not
persistent across function calls

TensorConstant Its value is specified at graph creation and does
not change from one call of the compiled funtion to
another (e.g. 3 and —2 in y = 3z — 2)

TensorSharedVariable Its value is specified at graph creation but is
bound to change from one call of the compiled
function to another (e.g. aand biny =az +bin a
regression setting where some z and y pairs have
been observed). Persistent across fuction calls

Theano primer

Listing 1: Simple algebra

import theano
import theano.tensor as T

1. Instantiate symbolic variables
x = T.vector (name='x")
T.vector (name="y’)

L9
Il

2. Build a computation graph
z =X +y

3. Compile a callable function

Hh
Il

theano. function (inputs=[x, y], outputs=z)

4. Call the function using numerical inputs
print f([1, 2], [3, 41)

Theano primer

Listing 2: Gradient computation

import theano
import theano.tensor as T

1. Instantiate symbolic variables
x = T.vector (name='x")

2. Build a computation graph
(x ** 2).sum()
_d x = T.grad(z, x)

N

3. Compile a callable function
f = theano.function (inputs=[x], outputs=d_z_d_ x)

4. Call the function using numerical inputs
print f£([1, 2])

Listing 3: Linear regression

import theano
import theano.tensor as T

x = T.scalar (name='x’"); t = T.scalar (name="t’)
a theano.shared(-1.0, name=’a’)
b theano.shared (0.0, name='b’)

y =a * x +Db
mse = (y — t) xx 2
grad_a, grad_b = T.grad(mse, [a, b])

f = theano.function (inputs=[x, t], outputs=mse,
updates={a: a - 0.01 x grad_a,
b: b - 0.01 * grad_b})

print [f(1, 5)) for i in xrange (10)]

Theano primer

Going further: online Theano tutorial

http://deeplearning.net/software/theano/
tutorial/index.html#tutorial

